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ANALYTICAL DETERMINATION OF COUPLED BENDING TORSION VIBRATIONS

OF CANTILEVER BEAMS BY MEANS O

SUMMARY

A method based on the concept of Station Functions is pre-
sented for calculating the modes and the frequencies of non-
uniform cantilever beams wibrating in torsion, bending, and
coupled bending-torsion motion. The method combines some
of the advantages of the Rayleigh-Ritz and Stodola methods, in
that a continuous loading function for the beam is used, with
the advantages of the influence-coefficient method, in that the
continuous loading function is obtained in terms of the dis-
placements at a finite number of stations along the beam.

The Station Functions were derived for a number of stations
ranging. from one to eight. The deflections were obtained in
terms of the physical properties of the beam and Station Num-
bers, which are general in nature and which have been tabulated
Jor easy reference. Examples were worked out in detail; com-
parisons were made with exact theoretical results. For a uni-
form cantilever beam with n stations, the first n modes and
Jrequencies were in good agreement with the theoretically exact
values. The effect of coupling between bending and torsion
was shown to reduce the first natural frequency to a value below
that which it would have if there were no coupling.

INTRODUCTION

The failure of turbine and compressor blades due to vibra-
tions has led to an increased interest in the study of the
vibrations of these blades and in the determination of the
natural modes and frequencies. In such theoretical studies,
it is usually assumed that the compressor or turbine blade
acts as a cantilever beam. The calculation of the uncoupled
modes of arbitrarily shaped cantilever beams has been ex-
tensively investigated (references 1 to 4), but little work has
as yet been done on calculating the coupled modes of such
beams. If the geometry of the beam is such that coupling
exists, the coupled modes are the actual vibrational modes
that must be calculated.

Four general methods are currently in use for calculating
uncoupled modes and frequencies of nonuniform beams.
These methods are the Rayleigh-Ritz or energy method
(reference 1), the Stodola method (references 5 and 6), the
influence-coefficient method (references 4 and 7), and the
integral-equation method (references 8 and 9). For each of
these methods, computational work can usually be carried out
in several ways. For example, by the use of influence co-
efficients the modes and frequencies can be determined by

F STATION FUNCTIONS®

Mykelstad’s iteration procedure (reference 7) or by matrix
methods (reference 4).

Any one of these methods can be extended to the calcula-
tion of coupled bending-torsion modes. The Rayleigh-Ritz
method usually requires that the uncoupled modes be deter-
mined before the coupled modes can be computed. In apply-
ing either the Rayleigh-Ritz or the Stodola method, great
difficulty is encountered in accurately determining the higher
modes, because the lower modes must first be “swept out”
by the use of exact orthogonality conditions (reference 10);
the process will otherwise always converge back to the
lowest mode. The same difficulties are encountered in the
integral-equation method.

The influence-coefficient method reduces the problem to
one having a finite number of degrees of freedom. The beam
is divided into n intervals and a concentrated loading is as-
sumed at the center of gravity of each interval. The solution
of the resultant determinantal equation gives the first =
modes. The accuracy of the higher modes is, however, very
poor; only the first third of the modes and the first half of the
frequencies are obtained within the usual engineering accu-
racy. Carrying along so many useless modes greatly in-
creases the labor involved.

A straightforward accurate method for determining the
coupled bending-torsion modes and the frequencies of non-
uniform cantilever beams, together with applications of this
method, was developed at the NACA Lewis laboratory dur-
ing 1949 and is presented herein. This method is based on
the use of Station Functions as first discussed in refer-
ence 11. Incorporated in the method are the advantages of
the continuous-function deflections of the Rayleigh-Ritz
and Stodola methods together with the advantages of the
finite number of degrees of freedom of the influence-coeflicient
method. When the method is applied to a uniform beam,
the first n roots of the resultant determinantal equation are
amply accurate for engineering purposes.

The final determinantal equation is solved herein by
matrix-iteration methods (reference 4). Any other con-
venient method may, however, be used and no knowledge
of matrix algebra is needed to carry out the calculations by
the matrix method. The work can be done by an inexperi-
enced computer, as the only operations necessary for determ-
ining each mode are cumulative multiplication and division.
In addition, for the case in which the coupling coefficient
remains constant along the beam, a simple quadratic

1 Supersedes NACA TN 2185, “Analytical Determination of Coupled Bending-Torsion Vibrations of Cantilever Beams by Means of Station Functions” by Alexander Mendelson and

Selwyn Gendler, 1950.
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formula and a series of curves are presented for determining
the first coupled mode in terms of the uncoupled modes.
Examples are developed in detail and comparisons with
exact theoretical results are included.

THEORY

In the usual influence-coefficient methods for solving
dynamical problems, a continuous body having an infinite
number of degrees of freedom is replaced by a body having a
finite number of degrees of freedom. Two principal assump-
tions are then made that introduce inaccuracies into the
solutions, particularly in the higher modes: (1) The resultant
of the inertia loads of all the infinitesimal masses in a finite
interval passes through the center of gravity of that interval;
and (2) a concentrated load that is the resultant of a dis-
tributed load produces the same deflection as the distributed
load. An attempt has been made to reduce the error due to
the second of these assumptions by the use of weighting
matrices (reference 12). Although the accuracy is thereby
increased, the effect of the first assumption is still great
enough to introduce serious errors (reference 11).

In order to eliminate these assumptions, Rauscher (ref-
erence 11) introduced the concept of Station Functions.
Instead of assuming the inertia loads to be concentrated at
the centers of gravity of the intervals, the inertia loads
and, consequently, the deflections are assumed to be con-
tinuous functions along the beam. The values of these
continuous deflection functions at the reference stations must
equal the deflections of the reference stations. The loading
on the beam is therefore a continuous function of the de-
flections of the reference stations. Inasmuch as the deflec-
tions of the reference stations can be computed from the
loading on the beam, which in turn is available from the
deflections, the deflections are therefore obtained as functions
of themselves. This procedure gives n homogeneous equa-
tions in the n deflections of the reference stations. The
resultant determinantal equation has n roots for the fre-
quency; it will be shown that for a uniform beam all these
roots are sufficiently accurate for engineering purposes if
the deflection functions are properly chosen. (For coupled
bending-torsion vibrations, 2n homogeneous equations and
2n roots are obtained for n stations.)

The deflection functions used must satisfy the boundary
conditions of the problem and also the condition that, at
any reference station, the value of the function must equal
the deflection of the reference station. Although it is always
possible to find directly a single function that will satisfy
these conditions, it is more convenient to obtain different
component functions at each station and to add all these
component functions together to give the complete deflec-
tion function. Rauscher (reference 11) calls these compon-
ent deflection functions Station Functions. For example,
the complete torsional deflection function for the beam will
have the following form:

(ez)=j2231 1426,

where

z dimensionless distance along beam

8(z) torsional deflection at distance z from root
6; torsional deflection at j* station

fi(z) Station Function in torsion associated with j* station
(All symbols are defined in appendix A.)

Each Station Function must satisfy the boundary condi-
tions of the problem and the following additional conditions:
(1) At the reference station with which it is associated, the
Station Function equals the deflection of that reference sta-~
tion; and (2) at all other reference stations, the Station
Function equals zero. The sum of all these Station Func-
tions will then give the complete deflection function for the
beam. The Station Functions and corresponding loading
functions are derived in appendix B for torsional vibrations,

k—6—

—+— : +———
{

P / 2 i—/ i ir/ n

FiaURE 1.—Cantilever beam with » stations.

bending vibrations, and coupled bending-torsion vibrations of
an arbitrary cantilever beam.

Torsional vibrations.—It is shown in appendix B that the
torsional deflections of the reference stations for a beam
divided into n intervals of length 8, as shown in figure 1,
are given by the following system of equations:

f;=w?6? #é @;;0; (1)
0 j=1
where
i1 n
;= 2 U [:IkN]k-“(k_ 1)Iijk+ IT-Z\’-{J'T (2)
=10k rSFH
2 and j=1,2, ...

frequency of vibration

6 length of interval

I, mass moment of inertia per unit length about elastic
axis at root section

I, ratio of average mass moment of inertia per unit length
of k™ interval to mass moment of inertia per unit length
at root section

C, torsional stiffness of root section

O, ratio of average torsional stiffness of £*™ interval to tor-
sional stiffness at root section

The Station Numbers NV, and M, are functions only of the
integers k, 7, and n and are defined as

NjkE fkk—lz'fj (Z) dz

(3)
Mjk Eﬁk_lfj (Z) dZ

where f;(z) represents the Station Functions derived in
appendix B and is given by

fi)=ayz+ay2*+. .. Fa@in;z " 4)

The coefficients a;, are determined in appendix B by
satisfying the conditions on the Station Functions. The
integrals in equations (3) are thus seen to be integrals of
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simple polynomials and the limits of integration are integers.
The Station Numbers N and M, are therefore rational
numbers, functions only of the integers n, k, and 5. These
numbers have been evaluated and are listed in tables I to
VIII.

If the physical properties of the beam under consideration
are known for each of the n intervals, C; and I, will be
known. The Station Numbers N, and M, can be obtained
from tables I to VIII. From equation (2), a;; can then be
easily calculated.

Equation (1) actually represents n homogeneous equations
in the n unknown deflections 6;. With L FT. 62_)\ these equa-

tions can be written as follows:

(all_x)01+a1202+a1303+ <ot o 0,=0
02101+(022_)\)92+ 012393+ e +a2n0n:0
a3101+a3202+(a33—)\)03+ o, =0 (5)
an101+an202+a71303 +(¢1nn N6,=0

For a nontrivial solution, the determinant of the coefficients
must vanish and the characteristic equation becomes

an—N\ a3 c e g
21 o — N Qg 0. Qg
(2431 Qgo a33—)\ v e . O3y =0 (6)
(2473 Qpy Qg Qupn—A
or
INT—[ayy)| =0 (6a)

where [ is the identity matrix, and [a,] is the dynamical
matrix.

Equation (6) can be solved for the n values of X by any
method available. The method used herein was to obtain
the values of A as the latent roots of the matrix [«;], which
is actually the dynamical matrix for the problem. The mode
shapes are obtained at the same time.

Bending vibrations.—The bending deflections for the beam
shown in figure 1 are given by the following system of equa-
tions (appendix B):

y1=w264%f _1=21 BisYs (7)
where
—_ i ]‘ - 14 4 L . 1 ’
pu=2 5 (mGPu— @+ 35 m, {(i—k+3) Nyt
B—Gk—1® @2k—1) ,
[ (3 ) '—( P) )7’] M :Ir}) (8)
7 and 7=1,2, ... n

mgy mass per unit length of beam at root section

my, ratio of average mass per unit length of k™ interval to
mass per unit length at root section

B, bending stiffness at root section

By ratio of average bending stiffness of £*™ interval to bend-
ing stiffness at root section

The Station Numbers M’;, N'z, P, and Q5 are func-
tions only of the integers k, j, and n and are defined by
3

k 2
Pu= " [Z—C—1z+5 &—1¢] ge1dz

Q= f ¢
k= '
k—1

k
M= f g,z)dz
k-1

T E—1pz4t (k—l)ﬂ gz)dz
L (9)

[
N’jkEf z2giz)dz
k=1

The Station Functions g,(z) are derived in appendix B and
are given by

91(25=b2j22+b3723+b4j24+ coo Fbrayzt® (10)

The integrals in equations (9) are thus seen to be integrals
of simple polynomials. The Station Numbers M’z, N';,
P’y, and @', are rational numbers, functions only of the
integers 7, k, and n. These numbers have been evaluated
and arc listed in tables I to VIII.

If the physical properties of the beam are known for each
of the n intervals, m, and B, will be known. The Station
Numbers M’;, N’ Py, and @', are obtained from tables T
to VIII; 8;; can then easily be calculated by equation (8).

The determinantal equation is:

P

Bii—A Bz B:s .o Bin
B2 Ba2a— N Bas -« - Bea
Ba B3z Bas—X . . . Bsa =0 ¢R))
Bnl 6712 an .Bnn_x
or
IN[—[B:}]|=0 (11a)
where
_B 1
——m064 w?

The dynamical matrix is [8,,].

Coupled bending-torsion vibration.—The torsional and
bending deflections due to coupled bending-torsion vibra-
tions of a cantilever beam are given by (appendix B):

Bi—w ‘F“ 54 Z (I‘aUB_H- GI"YH
(12)

Yi_ 2o o ]
=", 8 j=21<51191+3u r())

where
_ 7
e=—j
Tgo

T'= l ﬁ B,
_52 Oo mo
7o absolute magnitude of projection of distance from elastic
axis to center of gravity on perpendicular to bending
direction for root section
reo Tadius of gyration about elastic axis at root section




The quantities «;; and B are defined by equations (2)
and (8). The quantities v;s and §;, are given by

vu= 2 g | SN =k =18 M 33 8, M

=G P SEL

6ijE§13i(Sk(ink—ij)+ i Sr§<i—k+l>er+ - (13)
=B reF1 2

[ka—(l§~ ¢ (zkg 1”]1\@})

where

J

I%Ejzdtg—@—nz+%awdﬁjﬁ@wz

(T2 e yvaa a1y
Q= [ |55 = 1ratg =17 | S

and S, is the ratio of the average static mass unbalance of
the k® interval to the static mass unbalance at the root
sectlon.

The Station Numbers P;; and @ are listed in tables I to
VIII with the other Station Numbers. The determinantal

equation becomes

TFajpn—A Tag . T €Ly elyig . €lv1n
Fazl Fagz—)\ P Fazn 6F"{21 EP’Ygg . éF'an
Toau Toays . Pagn—N el'yn1 €lyns el'van 0
611 612 .. aln Bll_X 612 LI Bln
521 52‘7 . 5271, 621 622—")‘ . e - BQn
5711 6::2 67m Bnl 5712 Bnn A
(14)
or
N —[n:5]|=0 (14a)

where [n;;] is the dynamical matrix and I is the identity
matrix.

The first n roots of equation (14) will give the first n
coupled frequencies.

APPLICATIONS AND RESULTS

In applying the previously discussed method, it is necessary
to determine for a given beam the elements ay;, 85, v, and
8, of the dynamical matrices. These quantities will depend
on the physical properties of the beam and on the number of
stations chosen. If the physical properties of the beam are
known, the quantities ay;, B, v, and 8;; can be directly cal-
culated from equations (2), (8), and (13). The numbers
M., Ny, Py Qiey M i1y N' g, P’ 52, and Q5 appearing in these
equations depend on the number of stations n that are used
and can be read directly from tables I to VIII for any given
number of stations up to cight. Once these quantities have
been calculated, equations (6), (11), or (14) can be solved
for the frequencies by any method desired. The matrix-
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iteration method used herein is simple and rapid and re-
quires no particular computing skill. As will be indicated,
however, the accuracy of equations (6), (11), and (14) is
such that relatively few stations need be used, in which
case it may be convenient to expand the determinants and
to solve the resultant low-order algebraic equation.

In order to illustrate the accuracy, this method was applied
to torsional vibrations, bending vibrations, and coupled vi-
brations of a uniform cantilever beam. The exact theoretical
values for torsional vibrations and bending vibrations of
uniform cantilevers are well known. The exact theoretical
values for the coupled bending-torsion vibration of a uniform
beam were calculated (appendix D). A comparison was
then made between the values obtained by the method
presented and the exact theoretical values. The number of
stations used was 1, 2, and 3 (n=1, n=2, and n=3). The
comparisons are summarized in table IX.

Torsional vibration.—For the case of a uniform beam,
Cv=1I,=1 and equation (2) becomes

aij=é Nyp—(k—1) Mz+ Zn Mfr] (15)
= rSEt1

The values of N, and M, are given in tables I to VIII.
The table to be used depends on the choice of the number
of stations.

Let n=1;
soan=Ny
From table I, N;;=5/12,
0111—5/12
and
5 nlo ,
01 '1-2— l OO w 01
or
12 ¢ C
212 Co Lo
w'=— NE 2.400 e

The exact theoretical value for the first torsional frequency

18
_ 0
(.D—~1571 \/Iglz

The percentage crror is —1.4 when only one station is used.

The mode shape obtained by the method of Station Func-
tions agrees well with the theoretical mode shape, as is shown
in figure 2 (a). -

Let n=2; then by equation (15) and table II,

8 5 57
a11=N11+M12=1~5“+'1—2‘:6ﬁ
' 31 ,29 57
=Nt Mo="o35 45 120
8 8 16
021:N11+N12=T5+ﬁ='1-5
31 239 13
ean=NotNe="950"220~ 15
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FIGURE 2.—Comparison of theoretical mode shapes with mode shapes obtained by taking n stations along the beam for torsional vibrations.

The determinantal equation then becomes

57 57
60 120
=0
16 13
15 5
which gives
M=1.6214
2=0.1953
Therefore
T
— 0
w)—=— 1.571 Iolz
. A
w2—4.526 I0l2
The exact theoretical values are
. Cy
W)= 1.571 Klz

— 0
w2—4:.712JIOZ2

The precentage errors of the first two modes, for only two

stations, are found to be 0 and —4.

The mode shapes are shown in figures 2 (b) and 2 (c).
Agreement of the first mode with the exact theoretical shape

is excellent; the second mode agrees fairly well.

Let n=3; then by equation (15) and table T1I,

an=N;+ M+ M;;=0.945833
a12:N21+M22+M23=0.958333
a13:N31+M32+M33=0.520834
an=Ny+Ny+2M3;=1.033333
a22=N21+N22+21\423= 1 883333
0[23=N31+N32+2]\433= 1 0111 13
a31=N11—I—N12+N13=1 012500
a32=N21+N22—|—]\723=2.025000
a33—-——N31+N32+N33= 1.387501

The determinantal equation is

0.945833—A 0.958333 0.520834
1.033333 1.883333—A 1.011113 =0
1.012500 2.025000 1.387501—X
The solutions are
' M=3.6474
A=0.4093
A=0.1599
Therefore
. Cy
w) = 1. 5 7 1 I0l2
)
w,=4.689 sz
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The exact theoretical values are and from table 1
oA =tk 3L _ 59
w=1.571 I—;z 177630 1008 720
0
o Therefore, from equation (7),
wy=4.712~/ 7%
I w=3.493/ 20
— mol
=7.854 & . .
W= JRE The exact theoretical value is
The percentage errors of the first three modes, calculated w=3.516\/——3%
by use of three stations, are found to be 0, —0.5, and —4.5, Mo
respectively. The precentage error for just one station is found to be
The mode shapes are shown in figures 2 (d) to 2 (f). The —0.65. _
first two modes agree very well with the theoretical shapes; The mode shape is shown in figure 3 (a) and is seen to

agreement of the third mode is fair. agree very well with the theoretically exact shape.

This procedure can be carried out as shown for any number Let n—2; then by equation (16) and table II
of stations desired. ’ ’

1 1
Bending vibrations.—For a uniform beam, By=m,=1 and Bu=P'n—QutgN'n—g M':=0.422745

equation (8) becomes
Bi= Z{ip'ﬂc— Q wt+ 2 [(i—k +%> N'y+
k=1 r=k+$+1

I4 4 7 3 2 7
(ka_(lsc—l)g—(zk; 1) i>M/fT]} (16) 21=2P 11+2P IZ_Q,U_Q 12+'2_N112“"§M 12‘—:1.145167

312=P’21_ Q’21+%—NI22—%M’22=0-295 925

Let n=1; 3 2
’ v Bu=Pu—Qn Boy=2P"5 2P 3 — Q'm—Q'22+§N'22—§M'22=0.905530
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The characteristic equation is

0.422745—\

0.295925
=0
1.145167 0.905530—A\
The roots are
M=1.2943
A=0.0339
B
CLow;=3.516 m—otl)‘*
—_— BO
w2—2171 W
The exact theoretical values are
B
w,=23.516 7—%—;

B,
=22.
wy=2 04Jm0p

The percentage crrors for two stations are therefore found
to be 0 for the first mode and —1.5 for the second mode.
The mode shapes are plotted in figures 3 (b) and 3 (¢). The
first mode agrees excellently with the theoretically exact
shape; the second mode agrees fairly well.

Let n=3; then by equation (16) and table III,

’ 4 1 7 1 4 1 ’ 1
B”:P 11—Q 11+§N 12+§N 13_6 M 12_6 M’13:0-270604

L1 1 1 1 .
512:P/21—Q 21+3N’22+§N,23_6 A1/22'—6' M’3=1.009943

1 1, 1., 1.,
613=P,31_Q/31+§N,32+;)N 33—6 Msz_é M 3= 0.487441
621:2P,11+2P,12—Q,ll—Q,12+

%N’]2+2N’13_7§"MI]Q—%M/]3:0.648170
622=2P/21+2P,22‘ Q’21— Q’zz‘*‘

3 ! 7 2 ! 4‘ 4

§N 22+2N 23_‘§ ]\4 22_:§M 23:3266250
323=2P’31+2P/32_Q'31—Ql32+

3 4 ’ 2 ’ 4 4

§N a2+ 2N Bg M 32—§M33=1.689891
631:3P,11+3P,12+ 3P,13“Q’11_Q’12_‘Q,13+

gN’12‘|‘4N,13—‘%M’12*13—0M'13=0.985135
.332:3P'21+3P'22+3P'23—le—Qlfzz_lez—l‘

g‘AT,22+4N/23—%M,22_1?0 M’23:5‘822852
3331‘31)'31‘%‘31)'32'}‘ 3P'33"Q'31_Q’32”‘Q’33+

5
-2—N’32+4N’33—% M’sz—% M’5=3.204301

928716—51——2

The characteristic equation is

0.270604—X 1.009943 0.487441
0.648170 3.266250—X 1.689891 =0
0.985135 5.822852 3.204301—2X
The roots are
AM=6.5521
A=0.1667
A3=0.0223
Therefore
B,
w;=3.516 W
w,=22.04 \/75)‘24
B
=60.2 | Bo
[OF 60 0 '\/ m0l4

The exact values are

w=3.516 \/f;
0!

wy=22.04 \/77];:)‘24

B,
mol*

wy=61.70

The percentage errors for three stations are found to be 0,
0, and —2.4, respectively. The modes are plotted in figures
3 (d) to 3 (f). The first two modes are seen to agree very
well with the theoretical mode shape; agreement of the
third mode is fair.

Coupled bending-torsion vibrations.—A uniform beam
with the following constants was chosen:

_ o’
'y——wb2—38.56
e=0.8
n2
I'=1933
nZ
T=5415

The values of «;; and 8;; ave obtained as previously and are
the same as given before for n=1, n=2, and n=3. Also,
because Sy=B,= C,=m;=1,=1, equations (13) become

=30 [N',-r(k—l)M'ﬂch > MY,
k=1 r=k+1

i

51':':2{731)%— Qm‘l‘r:ik}_l [(":—k +%> N+

k=1

(ka—(§—1)3_2k2—1 7,> M,]}
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Let n=1; then the determinant is

Tay—N v
o1 Bu—>

0.002156—X 0.001196 |
" lo.111111 0.081944—\|

The roots are
M=0.0837

A.=0.00056

B

(.01:3.46 m’t

B,

O)g-:4:4.7 W

The procedure for calculating the exact theoretical values is
derived in appendix D. The exact values are

_. By
w;=3.49 \/le4

B,

0.)3:49.1 ml*
o

The percentage error for the first mode, calculated by use of
one station, is —0.9.

Let n=2; then the determinant is

Tap—A Teays ey ey

I" oy Tagp—A ey, el vo
o 5ia P
da1 022 B Baa—A

Substituting the known values and solving for X give for the
first two roots
9==0.0412

and the frequencies become

w1=3.48\/f°l4
0

B
“2319'7\/771:14

The percentage errors for two stations are —0.3 for the first
mode and —4.4 for the second mode.

This procedure can be carried out for any number of sta-
tions desired. For three stations, the frequencies obtained

are
B,
(:Jl——-3.48 \/mol*

w2=20.6 \/—W%I

By

ml*

w3=48.2

The precentage errors are —0.3 for the first mode, 0 for the
second mode, and —1.8 for the third mode.

The results obtained by the method presented are seen
to agree very well with the exact theoretical values.

These results are summarized in table IX, where a com-
parison is made with the results obtained for uncoupled
bending and torsional vibrations by use of influence coefli-
cients with weighted matrices (reference 12). The values
using weighted matrices were taken from table I of refer-
ence 12. It can be seen that for a given number of stations,
the results obtained by the method presented herein are con-
siderably better than those obtained by using influence co-

T T L
i | Uncoupled
——’— ST Al Rl e i frequency
Kk
1.0 e —— 190
R e e v e e
S N e '$
= \ \\’Q\\‘\Oq e
< .8 i \ 4
o - T 3
- I . ! i i
Q I T 1
< ™~ | ; [ 21
Q I ' } ; | i
S 6 — S
o T |
w — - b — -
| 0 Exact theoreticol ' | l
Ay o L

Y 2 A .6 .8 1.0
Coupling coefficient, €

Frorre 4.— Variation of frequency ratio € with coupling cocfficient e for several values of
uncoupled frequency ratio v.

efficients with weighted matrices. In general, it is indicated
that for a uniform cantilever beam using 7 stations along
the beam, the first n—1 frequencies and modes are in ex-
cellent agreement with exact theoretical values and even
the »™ modce is given within the accuracy with which the
physical properties of the material are known. For a tapered
beam, more stations may be required, depending on the
amount of taper. The number of stations required to give
satisfactory accuracy is listed in table X. A comparison is
made by using weighted influence coefficients; the values
are taken from table II of reference 12.

The first vibrational frequency is given approximately by
equation (C2) (appendix C) when coupling exists between
bending and torsion; it is plotted in figure 4. In orderto
check these curves, the exact solution was obtained (appen-
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dix D) for the ratio (w.,/w,)? equal to 4 and was plotted on
the same figure. The values given by equation (C2) are
seen to be in excellent agreement with the theoretically
exact values.

The effect of the coupling between bending and torsion
is to reduce the first natural frequency below that which
would exist if there were no coupling. This effect is shown
in figure 4, wherein the value of @ is always léss than 1.
This decrease in the first natural frequency due to coupling
is, however, relatively unimportant in the practical range of
(wi/wp)?>4 and e<0.75.

SUMMARY OF RESULTS

A method based on the use of Station Functions is pre-
sented for calculating uncoupled and coupled bending-torsion
modes and frequencies of arbitrary continuous cantilever
beams. The results of calculations made by this method

indicated that by the use of Station Functions derived herein,
n modes and frequencies can be obtained with sufficient ac-
curacy by using just n stations along the beam if the beam is
uniform. For a tapered beam, more stations may be re-
quired, depending on the amount of taper. The amount of
computational labor is markedly less than for other methods.
The use of Station Numbers tabulated herein further re-
duces the amount of calculation necessary. The effect of
coupling between bending and torsion is shown to reduce the
first natural frequency to a value below that which it would
have if there were no coupling.

Lewis FuigeaT PrOPULSION LABORATORY,
NarioNaL Apvisory COMMITTEE FOR AERONAUTICS,
CLEVELAND, OH10, October 18, 1949.
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APPENDIX A

SYMBOLS
The following symbols are used in this report: ¢,(2)
coefficient in equation for Station Function q.(2)
in torsion r
bending stiffness of beam, function of 2
bending stiffness at root section of beam
ratio of average bending stiffness of £ g0
interval to bending stiffness of root
section o
coefficient in equation for Station Function
in bending
torsional stiffness of beam, function of 2
torsional stiffness of root section of beam S
ratio of average torsional stiffness of kt* | S
interval to torsional stiffness at root | Sk
section
constants defined in appendix B
Station Function in torsion for j*' station |
(defined in text)
Station Function in bending for j** station Y
(defined in text) Yi
mass moment of inertia per unit length of | 2
beam about elastic axis, function of z, gy Bigy Yiss
except where otherwise defined 8izy N1z
mass moment of inertia per unit length of |
beam about elastic axis at root section
ratio of average mass moment of inertia | v
per unit length of k' interval to mass | o
moment of inertia per unit length at root
section €
station indices ]
summation indices 6,
length of beam Iy
Station Numbers (defined in text); function
of indices 7, k£, and n Q
w
mass per unit length of beam, function of z | w,
mass per unit length of beam at root section
ratio of average mass per unit length of | w,

My

10

k™ interval to mass per unit length at
root section
number of stations along beam

bending loading function on beam

torsional loading function on beam

absolute magnitude of projection of distance
from elastic axis to center of gravity on
perpendicular to bending direction

radius of gyration about clastic axis at
root section

absolute magnitude of projection of distance
from elastic axis to center of gravity on
perpendicular to bending direction for
root section

static mass unbalance, function of z, mr

static mass unbalance at root section, mgr,

ratio of average of static mass unbalance at
k™ section to static mass unbalance
at root section

distance from root of beam, except where
otherwise defined

bending deflection, function of z

bending deflection at +*" station

dimensionless distance along beam, x/s

elements of dynamical matrix defined in text

1 1y By

8 Co my

uncoupled frequency ratio, (w,/w,)?

length of interval along beam between
two stations

coupling cocflicient, (r¢/ry)?

torsional deflection, function of 2

torsional deflection at i*" station

root of frequency equation or characteristic
root of dynamical matrix

frequency ratio, (w/w,)?

frequency of vibration

frequency of uncoupled fundamental bend-
ing mode

frequency of uncoupled fundamental tor-
sional mode

second derivative of deflection with respect
to time



APPENDIX B

STATION FUNCTIONS AND DETERMINANTAL EQUATIONS

TORSIONAL VIBRATIONS

A schematic diagram of a cantilever beam divided into n
intervals of length § is shown in figure 1. The Station
Functions for the torsional vibrations of such a beam must
satisfy the following conditions:

At
z=0 f,(0)=0 (B1)
z=n f(n)=0 (B2)
2—i  fili)—=1 (B3)
z=7 f{5)=0 j#=u (B4)

where f/(z) denotes the derivative with respect to z.
Equations (B1) and (B2) represent the boundary condi-

tions that must be satisfied by a cantilever beam vibrating

in torsion; cquations (B3) and (B4) represent the further

conditions imposed upon the Station Functions. These
conditions will be satisfied by a function of the type
fl ()= izt a4 . .. +a(n+l)i2(n+l) (B5)

where the coefficients a;; must satisfy the following simul-
taneous equations obtained from conditions (B2), (B3),
and (B4):

0=au+2nasy+3n%ag+ ... +n+1)n"a gy B2a)
I=1a;+1an+%asu+ . . . +1"Va;; (B3a)

O=jay-+fan+7an+ . . . +j"Vaey: j#21 (Baa)

The coefficients a;, can be obtained by solving equations
(B2a) to (B4a) and the functions f;(z) determined for cach
station. Equation (B5), however, can also be written in
the following form:

1I(z—7e(z—cy)

TG
jAi

(B5a)

where II represents the product for all values of j except
g

j=1. The function in equation (B5a) obviously satisfies
conditions (B1), (B3), and (B4) because it has zeros at all
points specified by equation (B4), it equals 1 at the point
specified by equation (B3), and it equals zero at the point
specified by equation (B1). In order to satisfy condition
(B2), the constant ¢; is determined by substitution of equa-
tion (B5a) into equation (B2).

cai=nfori#n

e=n{ 1+ IT for i=n
1+> ——

j#=n —]

‘Equation (B5) can be obtained from equation (B5a) by
carrying out the indicated multiplications. The complete
deflection function is then given by

6(z)=f1(2) 6, fo(2) 0o+ .
=:§fj(z)0j

o Sa(2)0n
(B6)

The continuous loading function ¢, (z) can now be written
as

q,(z)=1w20(z)=1w2?é F(2)8; (B7)

A continuous loading function, which is a function of the
deflections at the reference stations, has thus been obtained.

BENDING VIBRATIONS

The Station Functions for the bending vibrations of the
beam shown in figure 1 must satisfy the following conditions:
at

2=0  ¢(0)=0 (BS)
z2=0 g’ :{0)=0 (B9)
e=n  g"(n)=0 (B10)
z=n g’ (ny=0 (B11)
z2=1 g:()=1 (B12)
z=j  gN=0  j#i (B13)

where ¢’ (2), ¢’’ (2), and g’’’ (2) denote the first, second, and
third derivatives, respectively, of ¢ (2) with respect to z.
Equations (B8) to (B11) represent the boundary condi-
tions that must be satisfied by a cantilever beam vibrating
in bending and equations (B12) and (B13) represent the
additional conditions imposed upon the Station Functions.
These conditions will be satisfied by functions of the type

gi(Z)z 62122"}’ b3123+ P +b(n+3)12(n+3) (B].4:)

where the coefficients b;; must satisfy the following equa-
tions obtained from conditions (B10) to (B13):

0=2by+6nbsy+...+O+3)n+2)n"0b 5, (B10a)
0=6bs+24nby+. .. +4+3NN+2)R+ 1IN min: (Blla)
1=32by+3%bgt . . . 1m0 b g (B12a)
0=72bp+ byt . .. +5"9Bb g, (B13a)

The coefficients can therefore be obtained from equations
(B10a) to (B13a) and the functions g; (2) determined for
11

VED)
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each station 7. Equation (B14) can, however, be written
in the following form:

H (z —neXzi4cez+cy)

g(2)= n [ TR G (Bl4a)

where II represents the product for all values of j except
i

j=1i. The function in equation (Bl4a) obviously satisfies
conditions (B8), (B9), (B12), and (B13), because it has
zeros at all points specified by conditions (B8), (B9), and
(B13) and equals 1 at the point specified by equation (B12).
In order to satisfy conditions (B10) and (B11), the constants
¢, and ¢; are determined by substitution of equation (Bl4a)
into equations (B10) and (B11). The general forms for c:
and ¢; are, however, complicated and it is easier to obtain
the numerical values of these constants for cach specific
case. Kquation (B14) can then be obtained from equation
(B14a) by carrying out the indicated multiplications. The
complete deflection function is then given by

y(Z)-Zg] i (B15)

The continuous bending loading function ¢,(z) can now be
written as

Qb(z):7nw2y(2):’mw‘zg(/f(Z)?]ﬁ (B16)
Vit

COUPLED BENDING-TORSION VIBRATIONS

The Station Functions for the coupled bending-torsion
vibrations are the same as previously given for the bending
vibrations and the torsion vibrations. The loading func-
tions, however, are given as follows (reference 7):

q(2)=1"0(2)+ S y(2)

- wz [11,(2)6,+S8g,2) ) (B17)
and
go(2)=S8 ?*8(z) + ma?y(z)
- wz [S7,(2)65+mg,(2) ] B18)

DETERMINANTAL EQUATIONS AND DYNAMICAL MATRICES

Once the Station Functions and the corresponding loading
functions have been determined, the deflections at the
reference stations can be obtained in terms of the loading
function. A homogeneous equation in the reference-station
deflections for each station is thereby obtained. The
determinant of the coefficients of the resultant set of homo-
geneous equations can be set equal to zero; the determinantal
frequency equation is thus derived. The deflections at the
reference stations are obtained by the well-known equations
for obtaining influence coefficients.

Torsion.—The deflection at the station i due to the
continuous loading ¢,(z) on the beam is given by

i zdz n id
=62ﬁ q,(z)j; —O—ldz—l—ézﬁ q,(z)ﬁ) ?21 dz

If O is assumed to have a constant value for each interval,
these integrals may be written as the sum of integrals over
each section. Equation (B19) then becomes

. Ailac[f zq,(,,)dz—i—J (l—k)qt(ﬁ)dz+f q,(z)dz:l
(B20)

B19)

By substituting the relation
q:(z)=0w'1 fj—;‘fi (2)6;

and by assuming a constant value for I for each interval and
changing the summation order,

6= w2 L0 2 {, > [ij_ 21e) dz— (k=) 1y kk_lf,-(z)dz-i-

p k+1[ e dz]g

B21)
Let
[ pea ENﬂl
k (B22)
. fi(z) dz =DM, J
Then
0;=u? # 6* Zn) a;;0; (B23)
0 Jj=1
where

n

i1
a,.jsgla[IkNjk—w—nIkMﬁ I,Mj,:l (B24)

r=k+1

If C.=1I.=1 (constant cross section), then

4._v Nye— (b= 1) Myt Z MJ,] (B25)
Let
(Y
A= To' (B26)
Then
)\el:jzlaij Bj (B23a)
and the characteristic equation is
el =N |= (B27)

where [ is the identity matrix.
Bending.—The deflection at the station 7 due to the con-
tinuous loading ¢,(z) on the beam will be given by

?/i=54j; Qb(z)ﬁz (i_—zl%;%;il) dz:dz-1+

iy f 74(2) ﬁ Em2t=2) g2 4z (B2S)



DETERMINATION OF COUPLED BENDING-TORSION VIBRATIONS OF CANTILEVER BEAMS 13

If B is assumed to have a constant value for each interval,
these integrals may be written as the sum of integrals over
each interval. Equation (B28) then becomes

g:k.lBkif [_ (e— 1)Z+ (k—1)% | gu2)dz —

k 3
fk-l [%—% (e—1)%2 +‘;£; (E—1)* | qu(z)dz+

iﬁn [2 —é (2k— 1)] gs(2)dz+

21 B —(k—1)?
fk [5 (2/c—1)2—%] q,,(z)dz} B29)
By substituting the relation
0 =wtm 3 g2y, (B30)
Jj=

and by assuming a constant average value for m in each in-
terval and changing the summation order,

@ m054 1

Yi=—p— 2=; 6117/1 (B31)

where

Bij= i_ 7)1,;{ my(i P’ j— Q'jk)‘f‘rilmr [(% —k +%> N+

( '(fild—@k;])i) M’J,]é (B32)
1>']k_J [__(k 1)z +—~(k—1)2:|(/,()d7 )
= [ [5—g =1+ 1] o) d

. (B33)

ke
N,J'kEj zyiz) dz
k—1

k
M = f g(2) dz
Jk-1 J

For a uniform beam, m,=B;=1 and equation (B32) be-
comeoes

Bi= AZ;} <iP'jk— Q,jk—f—rii-l {(7« —k +‘;‘> N’ +

[ks_(]?f_1)3_(2k2—1) i:l M'j,}> (B32a)
Let
_ ;%) (B34)

then the characteristic equation becomes

l[Bi:]—)\I[=O (B35)

where [ is the identity matrix and B; is the dynamical ma-
trix. In expanded form, equation (B35) becomes

|Bllﬁx 612 LI Bln
621 ﬂ22_)\ LRI 62n

=0 (B35a)
Bnl Bn2 ﬁnn_)\

where A is a latent root of the matrix [8,].

Coupled bending-torsion vibrations.—The deflections at
station 7 are given as before by equations (B19) and (B28).
The loading functions ¢, and ¢, are changed as follows:

q.(2)=w*[I 8(2)+S y<2)]§
gu(2) =[S 8(2) +m y(2)]

(B36)

If these two equations are substituted into equations (B19)
and (B28) and the integrations are performed as previously,
the following relation is obtained:

(.U ’n()04 L

- Z Ty, +eF'y”1/j
BO r

. (B37)
’_l/f me
p=t i 2 (oot eul)

ro
where «;; and 8;; arc given in equations (B24) and (B32) and

',02
e=—5

0 2
Pgo

1 I3

I'=s-—-
8 Cymy

=2 b [ SN

i
aijE
k=1

L (b —=1) S Myt 32 8, M’,,]
k=k+1

5 {56 Pam @i+ 3 5[ (i—kty) Nt

3 33 —
(k (lg 1) 2k2 1 i) 2 ljr]}
whero

Pu= [ [ 5= t—Dety =17 ] £ ) dz

Q=]

the determinantal equation therefore is

(B38)

L (k—l)s]ﬁ(z)dz

[)\I—-—[n””:()

where [7,,] is the dynamical matrix, the elements of which
are as indicated in equation (B37). The matrix [%,;] is seen to
be a 20X 2n matrix.




APPENDIX C

QUADRATIC FORMULA FOR FIRST COUPLED MODE

If only the first vibrational mode is desired, it is possible
to obtain this mode approximately by coupling together the
fundamental uncoupled bending mode with the fundamental
uncoupled torsional mode to obtain a simple quadratic
equation for the first coupled frequency. This equation is
valid when the coupling coeflicient ¢ is constant along the
beam. The differential equations obtained by coupling the
fundamental uncoupled torsional mode with the funda-

I mass moment of inertia about elastic axis, function of 2
wp frequency of uncoupled fundamental bending mode
w, frequency of uncoupled fundamental torsional mode

. denotes differentiation twice with respect to time

These equations lead to a quadratic equation in the fre-
quency ratio @, whose solution for the lowest frequency,
provided e is constant along the beam, is

mental uncoupled bending mode are: 0= o2 \/ 4y(1—9 G
) =g | (= ©2
mij+ S0 +-mwly=0 where
' (1) : .
ST+ Tew20=0 Q frequency ratio, (w/w,)? .
v uncoupled frequency ratio, (w,/ws)?
where e coupling coefficient, (r/r,)?

m mass per unit length of beam, function of z This quadratic has been plotted in figure 4 for values of ¢
S static mass unbalance, function of z ranging from 0 to 1 and values of v = (w,/w,)? from 1 to 100.
APPENDIX D
EXACT SOLUTION FOR COUPLED BENDING-TORSION VIBRATIONS OF UNIFORM CANTILEVER BEAM

The differential equations for the equilibrium of an ele- | where
ment of a beam vibrating in coupled bending-torsion vibra- Q= (w/wy)?
tions can be put in the following dimensionless form: )
v = (w,/w)
Y, ml o ml} o T Let
dx* B Y1+ B (Dl) dI7I:)7 )
d*Y, w o, It . dz ’
L = e WY — o W)
dIQ p (/ >
dY, v
where ) de
Yi=y/r
B} dY, ¥
Yo=¢6 dz 7
distance from root dYy, ( (D3)
T = ] =Y,
dz
i Then .
e=(r/r
Now ’ 72 AY,+ 1y
w 2__C4B
v it aYs_
., C
@0 Equation (D3) can be written as the single matrix equation
where c—12.36 (Y] o 0 1 0 0 0][Y.
¢;=2.467 Y 0 0 0 0 0 1||7,
Equations (D1) become d Yy 0 0 0 1 0 0 s
- = - Da)
Y o dz | Vi 0 o 0 0 1 of|¥] ¢
W;=C4Q() 1+ Y 1
(D2) Y, c.Q e,2 0 0 0 0 Y
d*Y. e5Q ¢ CeeQ  —
(112"2:‘ — Yi—Tm Y, Vs —fycﬁ —559 0 0 0 o] Y,

14
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or

ay

dz

AY (D42)

where Y and A are the matrices indicated.
The solution to the matrix equation (D4) is given by

Y=ot ¥, D5)

where Y, is a column of arbitrary constants.
From the boundary conditions

Y1= Y2= Y3=O
Y4: Y5= Ye:()
0
0
0

Y5(0)
Y(0)

If then Q,; is an element of the matrizant ¢4, the boundary
conditions give

at =0

z=1

" 245 Qs
Q54 7 Qg6 | =0 (DG)
Qo4 Qg5 Qg6

Equation (D6) is the frequency equation. It has an infinite

number of roots for w.

15
The A matrix of A is
- — 0 1 0 0 0 ]
0 -\ 0 0 0 1
0 0 —A 1 0 0
0 0 0 —N 1 0
2 (A" 0 0 —A 0
_e e 0 0 0 —x
L Y Y -
The characteristic equation A(A\) =0 is
N+ M e ant— (1= Jeucs 97—2=0 (D7)

Equation (D7) is a cubic equation in A2, Let the roots be
xl;_kly )\2,—)\2, x3}_>‘3

Then by the confluent form of Sylvester’s theorem,

pmsn 1 d*-1 [ eFQ\)
T (ag—1) dAia kH.()\—kk |l _
=i =Ag

where F(\) is the adjoint matrix, » is the number of distinct
roots, and «; is the multiplicity of the 7% root.
If the roots are all distinct, this relation becomes

(D8)

In order to determine the elements ©;;, ¢* must be evalu- eA___ﬁ erNFN)—eNF(—N) (D9)
ated. Use will be made of Sylvester’s theorem (reference =1 2)\ij£éli()\i“)\j)(>\i+>\j)
13).
where the adjoint matrix F(\) is given by
ERLLIY CON NERLLY ARELLN CRIPIELEP
Y Y Y Y
—5652)\3 Ai—e, QN —-e@ N2 ——e%2 A —eﬁ2 A—c,
Y Y Y
2
CONH(1— degts & c,ON2 ERLLY A S e CHRLUENYN
FOy—— Y Y v v
2 2
N+ (1 — e)eqcs % A N AN (1 — ¢ 2oL xt{-% A3 >\4+% A2 C QN
2 2
049)\4+(1—€)C4C5 %— A2 649)\4 C4Qk3+(1 _— E) 9—4& A 649)\2+(1 —_ E) ‘cf—ycj Q? )\5+% )\3 049)\3
2
— s Gy (1— oS _ e — %y —e%N n—can
_ Y Y Y Y .

(D10)
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From equations (D9) and (D10), the elements Q;; are seen
to be given by

~
3 )\i4+2’;—9 x1:2
=— —_— h A,
== 2 T A O
j#i
Q
3 ki4+9—’5)’_ x122
=— —  _sinh\;
s = NI V=) s
J#=t
3 A .
=— — At sinh \;
W= =L e O
i
2
3 049)\124‘646;9 (1—e)
S h ),
B=— 2 TRy oot
5
Q5= 0y g (Dl 1)
3 CN?
Qo — — — 2t cosh);
5 1=El I (A 2=\
j#i
Q
3 — €Cj ; )\i
964=_§ m{) Slnh >\i
i
3 — €C3 % )\i
%= =2 o) O
jwi
3 )\i4—049
== 20 T (na—n) PN
Fig J

The value of the determinant in equation (D6) must be plot-
ted against the frequency; the value of the frequency for
which this determinant becomes zero is thereby obtained.
This procedure involves first solving the cubic equation (D7)

TABLE I—STATION NUMBERS

n=1
\.\ k 1

4 ~
M 1 %
" I
” 3
’ 19
M 153
N B
P 0
@ o0

for each assumed value of frequency parameter and then
calculating the elements of the determinant from equations
(D11). The process is evidently long and laborious.

10.

11.

12.

13.
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TABLE II—STATION NUMBERS

n=2
j\ k 1 2
>~

11 5

M 1 e 2

N 8 8

15 15
P 0.183333 | 0.025000
0 . 046032 - 029365
M . 536364 .627273
N . 367100 . 851948
P .137933 - 057955
Q . 036616 . 069733

13 29

M 2 -& &

31 239

N 240 240
P —0.037500 | 0.143750
0 —. 008135 . 181448
M’ —. 060795 . 448674
N —. 034875 . 758685
P —. 011252 . 118462
Q —. 002614 . 150415
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TABLE III--STATION NUMBERS

TABLE IV—STATION NUMBERS

17

n=3
\ k
i \ 1 2 3
M 1 0. 950000 0.450000 | —0.050000
N . 545833 . 587500 —. 120833
P . 186310 . 032143 —. 005357
Q . 046577 . 038244 —. 011756
M . 596268 . 533205 .
N’ . 300646 . 708205
P’ . 148013 . 042560
Q . 038884 . 050843
M 2 —0. 525000 0. 725000 0. 475000
N —. 241667 1. 175000 1. 091667
P —. 068452 . 160714 . 031548
Q —. 014583 . 202083 . 068750
M’ —. 149356 . 602896 . 625418
N —. 083406 . 994860 1. 475153
P —. 026378 . 143948 . 057937
Q —. 006034 . 181698 - 127659
M 3 0.235185 | —0.153704 0. 568519
N . 106019 —. 231044 1. 513426
P . 020563 —. 023677 . 139749
Q . 006222 —. 028963 . 316408
M . 040630 —. 072928 . 445812
N .022325 — 111744 1. 200133
b . 006972 —. 012081 . 118007
Q . 001579 —. 014830 . 267865
TABLE V—STATION NUMBERS
n=>5
k
K 1 2 3 4 5
A 1 1. 097991 0.408755 | —0.040898 0.019866 | —0. 013120
N . 608222 527403 | —.100112 069159 | —. 058445
P £ 202887 026008 | —. 005074 L002776 | —. 001627
0 . 049943 L031910 | —. 011210 L008927 | —. 006836
M - 649902 . 492141 —. 070298 034939 | —. 024007
N . 427616 LB47H30 | —. 172488 121519 07639
P’ L 156411 .036908 | —.008903 L 004824 - 003375
Q@ . 040729 043977 | —.019678 015509 | —.014228
M 2 —0. 839550 0. 799339 0.493783 | —0. 089550 0. 049339
N —. 373049 1. 282044 1.145470 | —.310549 . 219544
P —.103119 . 169509 .037952 | —.011949 . 006007
0 —. 021583 . 212792 083245 | —.038398 . 025243
M’ —. 255330 . 699256 523828 | —.099723 . 058134
N’ —.139170 1.138472 1. 219101 —. 345551 . 260447
P —. 043239 .157833 041704 | —. 013166 . 008078
[+ —. 009758 . 198610 091532 | —. 042209 . 034055
M 3 0.762798 | —0.313501 0. 651687 0.575298 | —0.126001
N .320315 | —.465823 1. 718204 1.923065 | —.550573
P .089079 | —.044602 . 150488 .049347 | —.014601
[¢] 018334 | —. 054326 . 340126 157843 | —.061693
M/ 107103 | —. 228783 .633812 .573549 | —.137821
N 105126 | —.344915 1.674943 1.916360 | —.616234
P’ .032115 | —.034985 . 148520 .048803 | —.018600
Q L007151 | —. 042759 . 335798 156076 | —.078385
M 4 —0. 548214 0.187807 | —O0.159325 0. 576786 0. 562897
N —. 233780 276637 | —. 400446 2.109970 2. 432887
P —. 062665 025479 | —. 024868 . 140460 . 042205
0 —. 012809 .030950 | —.055302 . 458397 177006
M’ —. 117990 117132 | —.136452 . 557359 664560
N’ - 062435 175188 | —.344108 2.041363 2. 901646
P —. 018958 .017186 | —.021868 .137234 . 063512
[+ —. 004201 .020054 | —.048664 . 447980 . 267043
M 5 0.214238 | —0.069026 0.050004 | —0.080137 0. 525349
N .090928 | —.101352 127410 | —. 283759 2. 458336
P .024280 | —.009225 007667 | —.013645 . 134478
0 004952 | —.011196 017031 | —.044085 573757
M’ .033722 | —.031711 032307 | —.056459 432107
N .017789 | —.047311 081140 | — 200039 2.030260
P .005389 | —.004503 005002 | —.009675 116059
o4 001192 | —.005596 011120 | —.031249 495663

n==4
N 1 2 3 4
j

M 1 1.022222 0.420630 | —0.051852 0.022222

N 576455 557937 —.127249 076455

P 1104478 1029507 —. 006581 1002612

[ 1048240 035167 | —.014547 1008359

M - 623188 511882 | —. 082801 1042276

N 1413738 676680 203719 146954

P 1152256 039616 | —.010851 -005795

o 1030818 1047267 | —.023551 018630

M 2 —0.647917 0.747917 0.518750 | —0.085417

N — . 202857 1. 207143 1.207143 —. 292857

P —. 081920 -163021 1041205 | —. 009508

0 —1017205 204828 090842 | —.030688

M —l 211987 667412 544025 | —. 112648

N — 116662 1.091462 1269103 | —. 300585

P’ —. 036502 1153469 1044508 | —. 015000

o —. 008281 -193310 (097745 | —. 048203

M 3 0.522922 | —0.255556 0.633333 0.522222

N 1220365 | —.381746 1. 673810 1. 720365

P 1062798 —~ 037401 J148512 1037202

0 1013040 — 045624 - 335791 1118397

ar - 122052 —. 166738 1582158 643846

N 1065879 — 252823 1. 545802 2. 164827

P 1020304 — 026235 1140822 - 060554

o £ 004551 — 032114 1318707 -194016

M 4 —0. 221701 0.094850 | —0.105961 0. 543924

N — 096544 140724 — 267841 1.997206

P — 026267 | 013301 — 017322 1136803

0 — 005128 ~016301 ~ 038574 446729

M — 035456 042628 ~064723 438062

N — 019023 1064205 —164169 1. 622066

P —. 005836 1006481 —. 010869 S117037

o —. 001303 1007917 — 024222 1382752

TABLE VI—STATION NUMBERS
n==6
N 1 2 3 4 5 6

M 1 1172073 | 0.301101 |—0.032371 | 0.013323 |—0.010149 | 0. 008879
N LG3R800 | 501856 | —. 078978 | .046300 | —. 045644 | . 048592
P S210893 | 1020685 | — 003804 | 001823 | —. 001498 | 001143
0 S051551 | 029221 | — 008305 | 005860 | —. 008322 | 005949
A1 676304 | 474177 | —. 050120 | | 026582 | —. 018685 | . 015649
N’ -441260 | 1621067 | —. 144759 | 002370 | —. 083001 | 085903
P 160476 | 034473 | ~ 007337 | 003631 | —. 002691 | 002241
Q' 041616 | 041021 | — 016206 | | 011674 | —. 011350 | . 011604
M 2 — 1066508 | 0.853106 | 0.468124 |—0.070505 | 0. 044513 | —0. 035782
N — 466718 | 1.360105 | 1.081803 | — 244062 | 109948 | — 195451
P — 127634 | 117635% | 034411 | — 000203 | 006452 | —. 004561
0 — 026505 | 1220969 | 075401 | —. 020565 | 027216 | —. 023740
AT —.303048 | 731991 | 503742 | —. 085145 | 049793 | . 038661
N — 164215 | 1186681 | 10160252 | — 204736 | 223322 | _. 212149
P —.050602 | .162263 | 038806 | —. 011103 | . 007043 | —. 005503
Q' — 011384 | [203987 | 085309 | —. 035665 | 020701 | —. 028708
M 3 1.150584 |~0. 404200 | 0.693794 | 0. 546418 |—0, 133366 | 0.089627
N 489124 | —507206 | 1822457 | 1.822457 | —. 507296 | 489124
P 130870 | — 055056 | 10259 | . 045203 | — 018484 | 011295
Q .026719 | —1068060 | .352009 | 144808 | —. 077925 | . 058410
Vi J267118 | — 275585 | .G62165 | 553477 | —. 126314 | . 083246
N 141177 | —1413810 | 10745286 | 10846431 | —. 564800 | . 456500
P .042830 | — 041308 | .152473 | .045980 | —. 017100 | 011713
Q .009490 | — 050434 | 344556 | 146998 | — 072063 | 061097
M 4 —0.930065 | 0.273028 |—0.194854 | 0.502473 | 0,624501 | —0.171416
N —.300002 | 300807 | — 488124 | 2163786 | 2720200 | —. 033437
P —.103635 | 036020 | —. 029504 | 142229 | 0506698 | —. 020561
Q — 021011 | 04360 | — 065761 | 464052 | 238215 | —. 106938
A —.210538 | 182630 | —. 180822 | 598464 | 004424 | —. 166643
N — 110263 | .271857 | —. 454522 | 2185427 | 2.628772 | —. 012352
P’ —.033225 | .026154 | — 028221 | . 143453 | .053350 | —. 022708
@ —.007320 | .031846 | —. 062753 | .468015 | 224100 | —. 118729
M 5 0.581796 | —0. 156399 | 0.002907 |—0.111954 | 0.537351 | 0. 590157
N .242612 | —. 228221 | . 231501 | —. 304888 | 2,500279 | 3.104001
P 063996 | —. 020218 | 013474 | —. 018261 | 134578 | 046901
Q 012025 | — 024406 | .029896 | —. 058020 | .574036 | . 243745
A 120308 | —. 097119 | 081568 | — 110087 | 535330 | . 685021
N’ 062735 | — 144101 | 204039 | —. 391731 | 2499605 | 3. 678582
P -018841 | —.013674 | .012212 | —. 018226 | 133988 | . 068470
o .004140 | —1016634 | .027110 | —. 058815 | 571521 | 345986
M 6 —0.209220 | 0.054246 (—0.030239 | 0.031561 |—0.064035 | 0. 510543
N — 080082 | 079042 | — 075223 | 110087 | —. 201427 | 2 902948
P —.022893 | 009657 | —.004323 | .0D4960 | —. 011243 | 132560
Q —.004616 | .008425 | — 009587 | 016022 | —. 047575 | . 608254
A —.033141 | [0250A1 | — 020586 | 024431 | —. 049677 | . 425817
IS4 —~. 017248 | .038471 | — 051417 | .0B5977 | —. 225000 | 2. 457520
P —.005173 | .003631 | — 003042 | 003877 | —. 008676 | . 115150
o —.001135 | .004415 | — 006753 | .012502 | —. 036708 | . 606979
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TABLE VII—STATION NUMBERS

n="7
N 1 2 3 4 5 6 7
M 1 1.243487 0.376306 | —0.026266 0.000112 | —0.005396 0.006025 | —0.006513
N 667340 .430802 | —.063889 S031580 | —.026481 1033195 | —. 042160
P L218415 022382 | —. 003060 T01211 | —.000853 1000025 | —.000363
0 053049 027042 | —. 006768 1003800 | —. 003599 004820 | —. 005357
M 702228 458303 | —.050122 1010989 | —~.012820 011370 | —.011099
N 454474 597757 | —. 122420 (060352 | —. 057533 062520 | —.072080
P 164382 1032358 | —. 006038 002679 | —. 001831 001630 | —. 001614
o | 042465 1038456 | —. 013441 003611 | —. 007724 1003815 | —.010037
M 2 —1.321299 0.905137 0.446479 | —0.055674 0.020812 | —0.027396 0. 028701
N — . 570270 1. 435730 1.028307 | —.192270 133730 | —. 153603 185730
P — 154452 1182773 031489 | —. 007052 004233 | —. 004239 - 003780
0 —. 031847 228718 063032 | —.022639 017853 | —.022136 ©023463
M — 357636 | 764368 485103 | —. 071706 038132 | — 031029 028988
N —.101650 1. 234950 1123273 |~ 247832 170020 | —. 170555 |188216
P — . 058807 166641 (036328 | —.000168 T005346 | —.004565 004109
o — 013146 200297 [079621 | —. 020438 022542 | —. 023823 026110
M 3 1.672922 | —0.511106 0. 737737 0.516672 | —0.104856 0.031487 | —0.077078
N 701415 | —. 751768 1. 931045 1718603 | ~. 468955 [448232 | —. 498585
P 185835 | —. 069040 1162183 1040990 |~ 014225 loi262 | —. 010056
0 [037666 | —.083877 366024 1130058 |~ 059956 1063490 | —. 062408
M (355047 | —. 329150 692136 (532099 | . 108454 073511 | —. 063669
N 186003 | —. 492459 1.819566 1771836 |~ 484634 103671 | —. 413268
P [056122 | —.048434 - 156613 042913 | ~—. 014528 1010624 | —. 000168
% T01237a | —.050075 -353730 137128 | —.061218 1055430 | —. 056987
M 4 —1.605312 0.409027 | —0.250374 0. 629063 0.502219 | ~0.182666 0. 144688
N — . 664780 507643 | —. 625274 2. 201470 2.571472%6 | —1.002357 935220
P —174510 (052757 | —.037056 T147488 J051080 | —.026008 " 018551
0 —. 035122 [063%07 | —. 032278 430975 (218352 | —.136173 [115110
M — 317567 ‘247432 | —.216700 623577 534350 | —.157315 -115706
N —. 164012 1366953 | —. 543417 2, 273022 2538602 | —. 861833 1750618
P —. 049381 - 034761 Z 033166 147041 050504 | —.021773 016464
o —. 010326 [042084 | —. 073703 -470557 212061 — 113560 "102355
M 5 1120020 | —0.264373 0.134585 | —0.136596 0. 551252 0.668060 | —0.220971
N 464325 | —. 384003 1334325 | —. 480675 2. 570902 3.590325 | ~1.425675
P 121260 | —. 033334 019010 | —.021700 136202 063551 | —-.027154
0 ‘024312 | —.040333 042147 | —. 069981 530355 1330701 | —. 168426
A (234133 | —. 168109 122050 | —. 143020 563533 634247 | —.197770
N (100971 | —. 243403 ‘306705 | —. 503685 2. 649577 3.397336 | —1.281188
P 036034 | —.023166 017033 | —. 022914 130031 Jo57851 | —. 027322
o T007887 | —.028149 [030007 |  —.073907 - 503022 1300012 | —. 160318
M 6 —0. 617807 0.137401 | —0.064103 0.054068 | —0.0%4474 0. 507772 0. 632193
N —~. 262961 1100160 | —. 153887 180530 | —. 383331 2. 883613 4, 007039
P —. 065852 L0L7129 —. 003878 . 003211 —. 014243 . 1300106 . (051386
0 —. 013170 00712 | —. 019672 [026453 | —. 060230 - 634756 318021
M —.125078 [036131 | —.059376 (057414 | —. 092005 516450 - 704705
N — . 064447 127019 |~ 145336 - 201491 417397 2. 931074 4 491463
P ~. 019183 011750 | —.003393 J00%826 | —.015450 131144 - 069349
o ~. 004186 014281 | —.018616 028441 | —. 065330 690659 430362
M 7 0.205449 | —0.044613 0.020050 | —0.015852 0.021382 | —0.053078 0. 498306
N -083043 |  —.064603 -049675 | —. 055505 J006798 | —.205079 3.334065
P J021819 | —. 005533 00276 | —. 002373 J003481 | —.000551 - 130932
0 004358 | —. 006659 006106 | —. 007644 04713 | —. 049081 - 820708
M 1033023 | —.022307 (014642 | —. 013579 T018030 | —. 044219 420133
N T016993 |  —.032873 (036425 | —. 047602 085721 | —. 245636 2.816717
P 005053 | —. 003033 002001 | —. 002060 003074 | —. 007854 ©114318
o T001102 | —. 003632 1004637 | — 006638 012092 | —. 041094 1716958

g o o T (11 {1 VOt [ NN R IO DO D0 ) )
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TABLE VIII—STATION NUMBERS
n=8
\ k 1 2 3 4 5 ) 7 8
7 \

M 1 1.312192 0.364019 | —0.021829 0.006490 | —0.003545 0.003081 | —0.003931 0. 005039
N 695309 1462793 | —. 052063 .022453 |  —. 015803 1016958 |  —. 025621 037601
P 205483 [021401 | —. 002485 1000830 |  —.000499 1000464 |  —.000622 £ 000684
Q 1054447 1025255 | —. 005476 1002604 | —.002103 1002422 | —. 003869 1004929

' 727233 1434367 | —. 043004 1015242 | —.008698 007082 | . 007522 1008324
N 467152 577362 | —. 104816 1052799 | —.038988 1038933 | . 048943 - 062492
P “168111 1030533 | —.005119 1002003 |  —.001220 001045 | —. 001145 1001228
@ 043271 1036245 | —. 011204 1006433 | —.005146 005456 | —.007123
M 2 —1.600390 0. 955663 0.428499 | —0.045077 0.020351 | —0.016189 0.019610 | —0.024337
N — 682210 1. 507998 1984086 | —.155335 -001123 |  —.080039 127700 | —. 182002
P —1183160 -188781 1020123 |  —. 008550 002808 | —.002412 .003082 | —.003280
0 — 037524 $ 235968 1063606 | —.017807 011838 | —.012503 019183 | —.023705
M —. 415706 -797175 1468735 | —.060778 S028715 | —. 021414 021627 | —. 023284
N —. 221089 1. 282220 1. 082551 —. 200723 128550 | —.117660 140686 | —.174560
P —. 067464 - 170868 1034087 | —. 007611 003953 | —.003129 003272 | —.003421
@ —. 015018 214419 074650 | —.024428 016664 | —.016330 020358 | —.024694
M 3 2.337500 | —0.630523 0.780389 0.491625 | —0.082648 0.054514 | —0.060500 0.071477
N 067933 — 923581 2. 036155 1631308 | —.368956 209530 | —.304067 534410
P (254178 |  —. 083331 167794 [037442 |  —. 010886 007975 | —.009418 009602
Q “051181 | —.101100 1378439 119546 | —. 045861 041626 | —.058605 060206
M (462586 | —.388839 1792423 512112 | —. 001426 056607 | —.052460 054058
N 1240602 | —. 579786 1. 804405 1702145 | —. 408100 310711 —341167 - 405216
P 072148 | —. 056240 1160734 1040069 | —.012016 008120 | —.007864 ~007911
Q (015838 | —.068533 - 362854 127977 | —. 050817 042369 | —. 048018 -057107
M 4 —2.630070 0.593584 | —0.315718 0. 667195 0.558819 | —0.143453 0.132430 | —0.143916
N —1.075644 . 861856 —. 786292 2. 424356 2. 424356 —. 786292 . 861856 -1, 075644
P . 270850 L074709 | —. 045646 - 152881 - 046081 ~.020073 020253 | —.019152
Q —. 055949 000302 | —. 101283 - 408324 “197214 — 104712 -126011 — 138032
M — . 466670 329868 |  —. 258203 650770 561588 | —. 135711 (104802 | —.100103
N’ —. 240468 . 4875549 —. 646305 2. 367821 2. 436346 —. 743106 . 681473 -, 750848
P —. 071501 045534 | —. 038818 " 150002 047150 —. 018614 015440 | —. 014572
Q' —. 015627 . 055337 —. 086223 . 491981 . 197950 —. 097075 . 096084 —. 105178
M 5 2. 192995 —0. 454018 0. 201514 —0.175130 0. 584107 ). 633389 —0. 237005 0. 215982
N . 890699 —. 656778 . 499217 —. 614926 2.718847 3. 393592 —1. 539301 1. 613222
P . 230544 —. 055975 . 027793 —. 027134 . 141097 . 058226 —. 034728 . 028253
Q . 045812 —. 067648 . 061577 —. 087460 . 601511 302806 —. 215987 . 203600
M’ . 380428 —. 253524 . 165704 —. 170613 . 581124 614158 . . 155413
N’ . 199636 —. 373346 . 412443 —. 599857 2. 750891 3. 287044 —1, 241724 1. 164103
P’ . 059201 —. 034316 . 023783 —. 026822 . 142374 (54969 —. 027027 . 022340
Q . 012882 —. 041657 . 052749 —. 086477 . 606915 285874 —. 168026 . 161236
M 6 —1. 350286 0. 265559 —(). 108064 0. 078152 —0. 102878 0. 520374 0.709714 —0. 274441
N —. 546005 . 383370 —. 267117 . 273370 —. 466005 2. 952258 4, 523995 —2. 046630
P —. 140865 . 032367 —. 014611 L 011568 —. 016907 . 131525 . 070024 —, 034431
Q —. (27983 . 039093 —. 032351 . 037251 —. 071468 . 692634 - 434540 —. 248035
M’ —. 263362 . 163432 —. 098083 . 084195 —. 115917 . 543778 . 662638 —. 230699
N -, 134575 . 240192 —. 243600 . 294907 —. 525024 3. 081687 4. 216400 —1. 725908
P’ —. 039810 . 021885 —. (13810 . 012656 —. 019020 . 135367 . 062213 —. 032195
Q —. 008646 . 026552 —. 030611 . 040765 —. 080395 L 712714 . 385904 —. 232314
M i 0. 654484 —0. 124395 0. 048081 —0. 031856 0. 034801 —0. 066829 0. 484484 0. 662747
N . 263837 —. 179348 . 118705 —. 111252 . 157170 —. 370670 3. 239551 4. 867795
P . 067914 —. 015052 . 006430 —. 004626 005472 —. 011570 . 126311 055545
Q 013468 | —.018172 014232 | —. 014889 023114 |  ~. 060517 S701745 300381
M’ . 130945 —. 079057 . 045388 —. 036054 041862 —. 077799 . 500211 723527
N’ . 066783 —. 116059 . 112606 —. 126105 189085 —. 431248 3. 341811 5.337321
P 010727 — 010524 006331 — 005328 1006593 |  —.013324 128649 -072134
Q . 004280 —. 012763 . 014029 —. 017155 . 027846 —. (069680 . 806281 . 519815
M 8 -—0.202414 0. 037821 —0.014268 (. 009104 —0. 009307 0.015388 —0. 045167 0. 487926
N -, 081470 . 054494 —. 035205 . 031774 —. 041992 085181 —. 206574 3. 754721
P —. 020947 004560 —. 001898 . 001312 —. 001443 002573 —. 008204 . 120520
Q —. 004150 005504 —. (004201 . 004221 —. 006093 013452 —. 051711 941457
M’ -, 033107 019722 —. 011093 . 008527 —. 009326 015058 —. 039785 414996
N —. 016869 028937 |  —. 027507 1020809 |  —.042089 083310 | — 260993 3108326
P’ -—. 004979 . 002618 —. 001541 . 001252 —. 001450 . 002493 —. 007173 113558
Q —. 001080 . 003174 —. 003414 . 004029 —. 006122 . 013034 —. 044710 825790
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TABLE IX—COMPARISON OF RESULTS

Torsion Bending Coupled
Number
of —
i 2 2 2 4 4 4 4 4 4
stations w, Io” wy-y /I_“l_ wy Il® w, mol wg\/ mol” wg mel . wy mol” w, mol” ws molt
Co Co Co By By By By By By
Station-Function method
1 1.549 3.493 - 3.46
2 1.571 3. 516 . 3.48
3 1,571 3. 516 22.04 3.48 20.6 48.2
Weighted influence coefficients
2 1.575 539 |- 3.56 16,63 o[ e s
4 1.571 4.73 |- 3.52 22.80 | e
Exact theoretical value
1.571 4.712 7.854 3.516 22.04 61.70 3.49 20.6 49.1

TABLE X—STATIONS REQUIRED FOR SATISFACTORY ACCURACY

Torsion Bending
-7 ]
Method Tl T2 12 ol Yy 'l
o o, \/@t_ o 18| o J@ o, \/—l cug\/mol. w#ﬂ
Cp Co Cp By Bg By
Station Funetions ... ... ... 1 3 4 1 2 3
Weighted influence coefficients..____._ 2 4 |t 3 [T
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